Kullback-Leibler Divergence Constrained Distributionally Robust Optimization
نویسندگان
چکیده
In this paper we study distributionally robust optimization (DRO) problems where the ambiguity set of the probability distribution is defined by the Kullback-Leibler (KL) divergence. We consider DRO problems where the ambiguity is in the objective function, which takes a form of an expectation, and show that the resulted minimax DRO problems can be formulated as a one-layer convex minimization problem. We also consider DRO problems where the ambiguity is in the constraint. We show that ambiguous expectation-constrained programs may be reformulated as a one-layer convex optimization problem that takes the form of the Benstein approximation of Nemirovski and Shapiro (2006). We further consider distributionally robust probabilistic programs. We show that the optimal solution of a probability minimization problem is also optimal for the distributionally robust version of the same problem, and also show that the ambiguous chance-constrained programs (CCPs) may be reformulated as the original CCP with an adjusted confidence level. A number of examples and special cases are also discussed in the paper to show that the reformulated problems may take simple forms that can be solved easily. The main contribution of the paper is to show that the KL divergence constrained DRO problems are often of the same complexity as their original stochastic programming problems and, thus, KL divergence appears a good candidate in modeling distribution ambiguities in mathematical programming.
منابع مشابه
A Kullback-Leibler Divergence-based Distributionally Robust Optimization Model for Heat Pump Day-ahead Operational Schedule in Distribution Networks
For its high coefficient of performance and zero local emissions, the heat pump (HP) has recently become popular in North Europe and China. However, the integration of HPs may aggravate the daily peak-valley gap in distribution networks significantly.
متن کاملPhi-Divergence Constrained Ambiguous Stochastic Programs for Data-Driven Optimization
This paper investigates the use of φ-divergences in ambiguous (or distributionally robust) two-stage stochastic programs. Classical stochastic programming assumes the distribution of uncertain parameters are known. However, the true distribution is unknown in many applications. Especially in cases where there is little data or not much trust in the data, an ambiguity set of distributions can be...
متن کاملFrom Data to Decisions: Distributionally Robust Optimization is Optimal
We study stochastic programs where the decision-maker cannot observe the distribution of the exogenous uncertainties but has access to a finite set of independent samples from this distribution. In this setting, the goal is to find a procedure that transforms the data to an estimate of the expected cost function under the unknown data-generating distribution, i.e., a predictor, and an optimizer...
متن کاملModel Confidence Set Based on Kullback-Leibler Divergence Distance
Consider the problem of estimating true density, h(.) based upon a random sample X1,…, Xn. In general, h(.)is approximated using an appropriate in some sense, see below) model fƟ(x). This article using Vuong's (1989) test along with a collection of k(> 2) non-nested models constructs a set of appropriate models, say model confidence set, for unknown model h(.).Application of such confide...
متن کاملEntropic Approximation for Mathematical Programs with Robust Equilibrium Constraints
In this paper, we consider a class of mathematical programs with robust equilibrium constraints represented by a system of semi-infinite complementarity constraints (SICC). We propose a numerical scheme for tackling SICC. Specifically, by relaxing the complementarity constraints and then randomizing the index set of SICC, we employ the well-known entropic risk measure to approximate the semi-in...
متن کامل